Объяснение:
∫(10 +4 /√(16 -x²) - 7/x⁴ - 3 ∛x² +cosx)dx =
∫10dx +∫( 4dx ) /√(16 -x²) - ∫(7dx)/x⁴) - ∫3 ∛x² dx + ∫cosx)dx =
10x +4∫( dx ) /√16( 1 -(x/4)² ) - 7∫x⁻⁴ dx- 3∫(x)²/₃ dx +sinx +C =
10x +4∫( d(x/4) /√( 1 -(x/4)² ) - 7*x⁻⁴⁺¹ /(-4+1) - 3 * x∛x² / (1+2/3) +sinx +C =
10x + 4arcsin(x/4) + 7 / 3x³ - (9/5)*x∛x² +sinx +C .
Объяснение:
∫(10 +4 /√(16 -x²) - 7/x⁴ - 3 ∛x² +cosx)dx =
∫10dx +∫( 4dx ) /√(16 -x²) - ∫(7dx)/x⁴) - ∫3 ∛x² dx + ∫cosx)dx =
10x +4∫( dx ) /√16( 1 -(x/4)² ) - 7∫x⁻⁴ dx- 3∫(x)²/₃ dx +sinx +C =
10x +4∫( d(x/4) /√( 1 -(x/4)² ) - 7*x⁻⁴⁺¹ /(-4+1) - 3 * x∛x² / (1+2/3) +sinx +C =
10x + 4arcsin(x/4) + 7 / 3x³ - (9/5)*x∛x² +sinx +C .