1) 3∫x²dx+2∫x³dx= 3(x³/3)|0 -1 +2*(x⁴/4)|0 -1= x³|0 -1 + (x₄/2)|0 -1= (0+1)+(0-1/2)= 0,5
2) 2∫x³dx-6∫x²dx +8∫xdx =2(x⁴/4)|1 -2 -6(x³/3)|1 -2+8(x²/2)|1 -2= (x⁴/2)|1 -2 -(2x³)|1 -2+(4x²)|1 -2= (1/2 - 8)-(2+16)+(4-16)= -7,5-18-12= -37,5
1) 3∫x²dx+2∫x³dx= 3(x³/3)|0 -1 +2*(x⁴/4)|0 -1= x³|0 -1 + (x₄/2)|0 -1= (0+1)+(0-1/2)= 0,5
2) 2∫x³dx-6∫x²dx +8∫xdx =2(x⁴/4)|1 -2 -6(x³/3)|1 -2+8(x²/2)|1 -2= (x⁴/2)|1 -2 -(2x³)|1 -2+(4x²)|1 -2= (1/2 - 8)-(2+16)+(4-16)= -7,5-18-12= -37,5