ответ:
Решение.
Вычислить arcsin(sin(141π/16)
ответ: 3π/16 .
Объяснение: - π/2 ≤ arcsin(a) ≤ π/2
sin141π/16 =sin(9π- 3π/16 )= sin(3π/16) .
* * * 3π/16=(π/2)*(3/8) < π/2 * * *
arcsin(sin(141π/16) =arcsin(sin(3 π/16) =3π/16.
sin(141π/16) =sin(8π+ 13π/16)= sin(13π/16)= sin(π -3π/16) =sin(3π/16) .
ответ:
Решение.
Вычислить arcsin(sin(141π/16)
ответ: 3π/16 .
Объяснение: - π/2 ≤ arcsin(a) ≤ π/2
sin141π/16 =sin(9π- 3π/16 )= sin(3π/16) .
* * * 3π/16=(π/2)*(3/8) < π/2 * * *
arcsin(sin(141π/16) =arcsin(sin(3 π/16) =3π/16.
sin(141π/16) =sin(8π+ 13π/16)= sin(13π/16)= sin(π -3π/16) =sin(3π/16) .