Возведите в степень: источник: крамор в.с. повторяем и систематизируем школьный курс и начала анализа, м., 1990, с. 66 (тема: преобразование арифметических корней) пытался решить так: хотелось бы спросить верно ли такое решение, и ещё вот пара вопросов: 1) ранее автор указывал, что в школьном курсе рассматривается только арифметическое значение корня (указ. соч., с. 58), означает ли тогда (раз корень арифметический, т.е. рассматриваются только положительные значения корня), что корень третьей степени из x в кубе равен модулю x? 2) модуль x умноженный на x в четвёртой степени равен ли модулю x в пятой степени?

Фаай Фаай    3   20.06.2019 00:10    1

Ответы
Ренаткрутой Ренаткрутой  16.07.2020 01:48
Арифметические корни рассматриваются только для корней чётной степени (квадратных, например).Они должны иметь неотрицательное значение и подкоренное выражение может быть только неотрицательным. А корни нечётных степеней могут извлекаться и из отрицательных выражений и сами могут принимать отрицательные значения. Поэтому в вашем примере никаких модулей писать не надо, т.к. корень 3 степени.

\sqrt[3]{x^3}=x\\\\|x|x^4= \left \{ {{x^5,\; esli\; x \geq 0,} \atop {-x^5,\; esli\; x

\sqrt[2n]{a^{2n}}=|a|

\sqrt[3]{-8}=-2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра