Велосипедист проехал 15 км с одной скоростью и еще 6 км -со скоростью ,меньшей на 3км/ч.на вест путь он затратил 1,5ч .вычислите скорости с которыми ехал велосипед
Пусть U1 = х - скорость на первом промежутке пути, тогда U2 = (х-3) - скорость на втором => х>3. Время на первом промежутке = 15/х, на втором = 6/(х-3). Получим уравнение: 15/х + 6/(х-3) = 1,5
Упростим это уравнение, домножив обе части на 3/2. Получим: 10/х + 4/(х-3) = 1
Приведём к общему знаменателю, получим квадратное уравнение: (10*(х-3) + 4*х)/(х*(х-3)) = 1 (10х-30+4х)/(х^2-3х)=1 х^2-17х+30=0 D=169 х1=(17+13)/2 =15 х2=(17-13)/2 =2 => не подходит, т.к. необходимо х>3.
15/х + 6/(х-3) = 1,5
Упростим это уравнение, домножив обе части на 3/2. Получим:
10/х + 4/(х-3) = 1
Приведём к общему знаменателю, получим квадратное уравнение:
(10*(х-3) + 4*х)/(х*(х-3)) = 1
(10х-30+4х)/(х^2-3х)=1
х^2-17х+30=0
D=169
х1=(17+13)/2 =15
х2=(17-13)/2 =2 => не подходит, т.к. необходимо х>3.
ответ: U1 = 15км/ч; U2 = 12км/ч.