Теорема Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену с тем же знаком. и Обратная теорема Виета если угадаем числа, такие, что их сумма опять же для приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену с тем же знаком то эти числа - корни уравнения, при условии, что дискриминант неотрицателен.
По Виету сумма корней 13, один корень есть, тогда второй корень
13-3=10
и по тому же Виету произведение корней равно свободному члену q=3*10=30
ответ.
По теореме Виета, если - корни заданного квадр. уравнения,
то
Заменим первый корень на 3 , получим
ответ:
Теорема Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену с тем же знаком. и Обратная теорема Виета если угадаем числа, такие, что их сумма опять же для приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену с тем же знаком то эти числа - корни уравнения, при условии, что дискриминант неотрицателен.
По Виету сумма корней 13, один корень есть, тогда второй корень
13-3=10
и по тому же Виету произведение корней равно свободному члену q=3*10=30