В равнобедренном треугольнике проведены биссектрисы углов, прилежащих к основанию. Определи длину биссектрисы угла ∡A, если длина биссектрисы угла ∡C равна 16 см. Рассмотрим треугольники ΔDAC и Δ .
(Все углы и стороны нужно записывать большими латинскими буквами.)
1. Углы, прилежащие к основанию равнобедренного треугольника, . Так как данный треугольник равнобедренный, то ∡B = ∡BCA.
2. Так как проведены биссектрисы этих углов, справедливо, что ∡ =∡DAC=∡DCE= ∡ .
3. У рассматриваемых треугольников общая сторона . Значит, треугольники равны по второму признаку равенства треугольников. У равных треугольников равны все соответствующие элементы, в том числе стороны = .