Уравнения : )) подробно : ) 2sin x-1=0 cos(2x+п/6)+1=0 6sin в квадрат x-5 cos x+5=0

sinyavska1988 sinyavska1988    1   11.07.2019 12:10    1

Ответы
жпжрдмдопнулуу жпжрдмдопнулуу  17.09.2020 20:56
Решение
1)  2sin x-1=0
sinx = 1/2
x = (-1)^n arcsin(1/2) + πk, k∈Z
x = (-1)^n (π/6) + πk, k∈Z
2)  cos(2x+П/6)+1=0
cos(2x+П/6) = - 1
2x+П/6 = π + 2πn, n∈Z
2x = π - π/6 + 2πn, n∈Z
2x = 5π/6 + 2πn, n∈Z
x = 5π/12 + πn, n∈Z
3)  6sin²x - 5cosx + 5 = 0
6(1 - cos²x) - 5cosx + 5 = 0
6 - 6cos²x - 5cosx + 5 = 0
6cos²x + 5cosx - 11 = 0
cosx = t, ItI ≤ 1
6t² + 5t - 11 = 0
D = 25 + 4*6*11 = 289
t₁ = (- 5 - 17)/12
t₁ = - 22/12
t₁ = -11/6
t₁ = - 1 (5/6) не удовлетворяет условию ItI ≤ 1
t₂ = (- 5 + 11)/12
t₂ = 1/2
cosx = 1/2
x = (+ -)arccos(1/2) + 2πm, m∈Z
 x = (+ -) *(π/3) + 2πm, m∈Z
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра