Чтобы упростить данное выражение, воспользуемся правилами алгебры и выполним соответствующие операции.
Начнем с числителя:
((x + 6) / (x³ - 216)) + (1 / (36x²))
Общий знаменатель будет равен (x³ - 216) * (36x²), поэтому приведем оба слагаемых к общему знаменателю:
((x + 6) * (36x²) + (x³ - 216)) / ((x³ - 216) * (36x²))
(36x³ + 216x² + x³ - 216) / ((x³ - 216) * (36x²))
(37x³ + 216x² - 216) / ((x³ - 216) * (36x²))
Теперь обратимся к знаменателю:
(x + 6) / (216x - x⁴)
Разложим x⁴ на (x²)²:
(x + 6) / (216x - (x²)²)
(x + 6) / (216x - x² * x²)
(x + 6) / (x² * (216 - x²))
Теперь обратимся ко второму слагаемому:
(36 * (2x + 6)) / ((x + 6)²)
(72x + 216) / ((x + 6)²)
Теперь, объединим все части выражения:
((37x³ + 216x² - 216) / ((x³ - 216) * (36x²))) / ((x + 6) / (x² * (216 - x²))) - (72x + 216) / ((x + 6)²) + 7
Чтобы упростить это дальше, можно выполнить умножение и сокращение, но данное выражение уже достаточно сложно и не требует дальнейшего упрощения.
Чтобы упростить данное выражение, воспользуемся правилами алгебры и выполним соответствующие операции.
Начнем с числителя:
((x + 6) / (x³ - 216)) + (1 / (36x²))
Общий знаменатель будет равен (x³ - 216) * (36x²), поэтому приведем оба слагаемых к общему знаменателю:
((x + 6) * (36x²) + (x³ - 216)) / ((x³ - 216) * (36x²))
(36x³ + 216x² + x³ - 216) / ((x³ - 216) * (36x²))
(37x³ + 216x² - 216) / ((x³ - 216) * (36x²))
Теперь обратимся к знаменателю:
(x + 6) / (216x - x⁴)
Разложим x⁴ на (x²)²:
(x + 6) / (216x - (x²)²)
(x + 6) / (216x - x² * x²)
(x + 6) / (x² * (216 - x²))
Теперь обратимся ко второму слагаемому:
(36 * (2x + 6)) / ((x + 6)²)
(72x + 216) / ((x + 6)²)
Теперь, объединим все части выражения:
((37x³ + 216x² - 216) / ((x³ - 216) * (36x²))) / ((x + 6) / (x² * (216 - x²))) - (72x + 216) / ((x + 6)²) + 7
Чтобы упростить это дальше, можно выполнить умножение и сокращение, но данное выражение уже достаточно сложно и не требует дальнейшего упрощения.