Решение 1) Tg(2x+π\6)=-√3 2x + π/6 = arctg(- √3) + πk, k ∈ Z 2x + π/6 = - π/3 + πk, k ∈ Z 2x = - π/3 - π/6 + πk, k ∈ Z 2x = - π/2 + πk, k ∈ Z x = - π/4 + πk/2, k ∈ Z 2) Sin(3x+2)=√3/2 3x + 2 = (-1)^n * arcsin(√3/2) + πn, n ∈ Z 3x + 2 = (-1)^n * (π/3) + πn, n ∈ Z 3x = (-1)^n *(π/3) - 2 + πn, n ∈ Z x = (-1)^n *(π/9) - 2/3 + π/3n, т ∈ Я
1) Tg(2x+π\6)=-√3
2x + π/6 = arctg(- √3) + πk, k ∈ Z
2x + π/6 = - π/3 + πk, k ∈ Z
2x = - π/3 - π/6 + πk, k ∈ Z
2x = - π/2 + πk, k ∈ Z
x = - π/4 + πk/2, k ∈ Z
2) Sin(3x+2)=√3/2
3x + 2 = (-1)^n * arcsin(√3/2) + πn, n ∈ Z
3x + 2 = (-1)^n * (π/3) + πn, n ∈ Z
3x = (-1)^n *(π/3) - 2 + πn, n ∈ Z
x = (-1)^n *(π/9) - 2/3 + π/3n, т ∈ Я