Давайте решим эту задачу шаг за шагом.
Итак, у нас есть следующее выражение:
1. Давайте начнем с первого слагаемого . Первое, что нужно сделать, это вычислить логарифм числа 20 по основанию 2.
Находящийся внутри скобок логарифм означает, что мы находим логарифм 2 по основанию 2 и возводим это в квадрат.
Логарифм 2 по основанию 2 равен 1 (так как это базовое свойство логарифмов), и поэтому равно .
2. Перейдем ко второму слагаемому . Здесь мы находим произведение двух логарифмов, поэтому нам нужно найти оба логарифма и перемножить их.
Сначала найдем логарифм 20 по основанию 2: . Чтобы найти это значение, мы должны спросить себя: "2 в какую степень нужно возвести, чтобы получить 20?". Ответ на этот вопрос - 4, так как , а .
Поэтому .
Теперь найдем логарифм 5 по основанию 2: . Опять же, мы спрашиваем себя: "2 в какую степень нужно возвести, чтобы получить 5?". Ответ на этот вопрос - около 2,322, так как , а . Между 2 и 3 должно быть число, равное примерно 5, и это число около 2,322.
Поэтому .
Теперь перемножим оба логарифма: .
3. Осталось третье слагаемое . Здесь мы умножаем логарифм 5 по основанию 2 на самого себя и умножаем полученное значение на -2.
мы уже нашли ранее - это около 2,322.
будет .
Теперь у нас есть все три слагаемых, и мы их суммируем:
.
Поэтому ответ на задачу равен 24,644.