Существуют ли такие рациональные нецелые числа х и у, что а) оба числа 19х+8у и 8х+3у целые? ; б) оба числа 19x^2 + 8y^2 и 8х^2+3y^2 целые?

мистертомат мистертомат    2   19.06.2019 06:10    0

Ответы
mops14 mops14  15.07.2020 16:25
Дано:
Рациональные нецелые x и y
Доказать:
а) оба числа 19х+8у и 8х+3у целые
б) оба числа 19x² + 8y² и 8х²+3y² целые
Док-во
а) 19х+8у
чтобы получилось целое число, нужны дроби, которые сокращаются
В данном случае, x<19÷19 и y<8÷8
Т.к. x и y - рациональные нецелые числа ⇒ x∈[1÷19; 18÷19] и y∈[1÷8; 7÷8]

8х+3у
чтобы получилось целое число, нужны дроби, которые сокращаются
В данном случае, x<8÷8 и y<3÷3
Т.к. x и y - рациональные нецелые числа ⇒ x∈[1÷8; 7÷8] и y∈[1÷3; 2÷3]

⇒ 19х+8у и 8х+3у целые

б) 19x² + 8y² и 8х²+3y²
чтобы получилось целое число, нужны дроби, которые сокращаются
В данном случае, не ни одного числа, при возведении в квадрат получают числа 19,8 и 3 ⇒ 19x² + 8y² и 8х²+3y² не целые
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра