Сумма квадратов крайних чисел четырехзначного числа равна 65, а разность квадратов второй и третьй цифр этого числа равна 27. сумма этого числа и числа 2727 равна числу, записанному циф- рами исходного числа, но в обратном порядке. найдите число.

nastya2736 nastya2736    2   18.05.2019 05:10    2

Ответы
SofaI SofaI  11.06.2020 10:53

x - искомое четырехзначное число
x = 1000a+100b+10c+d, а - число тысяч, b - число сотен, с - число десятков, d - число единиц (0<a<10; 0<b<10; 0<c<10; 0<d<10)

a и d - крайние числа => a^2+d^2=65
b и с - вторая и третья цифры => b^2-c^2=27

Решим первое уравнение, учитывая, что a и d - натуральные числа: (1;8);(8;1);(4;7);(7;4)

Второе уравнение можно расписать так: (b-c)(b+c)=3^3. Это уравнение можно расписать как совокупность из четырех систем уравнений (учитывая, что (b-с) и (b+с) - натуральные числа, так как b и с - натуральные): 1) b-c=1 и b+c=3^3=27; 2) b-c=3 и b+c=3^2=9; 3)b-c=3^2=9 и b+c=3; 4)b-c=3^3=27 b b+c=1. Решая первую систему, получаем (14;13) - это не удовлетворяет условию 0<b<10 и 0<c<10. Решая вторую систему, получаем (6:3) - удовлетворяет нужным условиям. Решая третью систему, получаем (6;-3) - не удовлетворяет условию 0<c<10. Решая последнюю систему, получаем (14;-13) - не удовлетворяет условиям  0<b<10 и 0<c<10. Значит искомые числа b и с равны 6 и 3 соответственно.

Соединяя числа 6 и 3 и числа, полученные при решении уравнения a^2+d^2=65, получаем варианты искомого четырехзначного числа: 1638, 8631, 4637, 7634. Прибавляя к каждому числу 2727, убеждаемся, что искомое число - 4637 (так как 4637+2727=7364, то есть записанное искомое число в обратном порядке)

ответ: 4637 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра