Стригонометрией решите тригонометрические уравнения: 1)3cos^2-5cosx-8=0 2)8cos^2x-14sinz+1=0 3)5sin^2x+14 sinxcosx+8cos^2x=0 4)2tgx-9ctgx +3=0 5)sin^2x-5cos^2x=2sin2x 6)5cos2x+5=8sin2x-6sin^2x

микки36 микки36    1   09.08.2019 08:40    1

Ответы
marimitul marimitul  04.10.2020 06:55
1)3cos²x-5cosx-8=0
cosx=a
3a²-5a-8=0
D=25+96=121
a1=(5-11)/6=-1⇒cosx=-1⇒x=π+2πn,n∈z
a2=(5+11)/6=2 2/3>1 нет решения

2)8cos^2x-14sinx+1=0
8-8sin²x-14sinx+1=0
sinx=a
8a²+14a-9=0
D=196+288=484
a1=(-14-22)/16=-2,25<-1 нет решения
a2=(-14+22)/16=1/2⇒sinx=1/2⇒x=(-1)^n*π/6+πn,n∈z

3)5sin^2x+14 sinxcosx+8cos^2x=0/cos²x
5tg²x+14tgx+8=0
tgx=a
5a²+14a+8=0
D=196-160=36
a1=(-14-6)/10=-2⇒tgx=-2⇒x=-arctg2+πn,n∈z
a2=(-14+6)/10=-0,8⇒tgx=-0,8⇒x=-arctg0,8+πk,k∈z

4)2tgx-9ctgx +3=0
2tgx-9/tgx+3=0
2tg²x+3tgx-9=0,tgx≠0
tgx=a
2a²+3a-9=0
D=9+72=81
a1=(-3-9)/4=-3⇒tgx=-3⇒x=-arctg3+πn,n∈z
a2=(-3+9)/4=1,5⇒tgx=1,5⇒x=arctg1,5+πk,k∈z

5)sin^2x-5cos^2x=2sin2x
sin²x-5cos²x-4sinxcosx=0/cos²x
tg²x-4tgx-5=0
tgx=a
a²-4a-5=0
a1+a2=4 U a1*a2=-5
a1=-1⇒tgx=-1⇒x=-π/4+πn,n∈z
a2=5⇒tgx=5⇒x=arctg5+πk,k∈z

6)5cos2x+5=8sin2x-6sin^2x
5cos²x-5sin²x+5sin²x+5cos²x-16sinxcosx+6sin²x=0/cos²x
6tg²x-16tgx+10=0
tgx=a
3a²-8a+5=0
D=64-60=4
a1=(8-2)/6=1⇒tgx=1⇒x=π/4+πn,n∈z
a2=(8+2)/6=5/3⇒tgx=5/3⇒x=arctg5/3+πk,k∈z
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра