Совершенно не понимаю как найти наибольшее и наименьшее значение функции: а)y=sinx-cos x б)y=корень из 6 sin x - корень из 2 сos x

Katpo Katpo    3   21.06.2019 07:10    1

Ответы
Larka2017 Larka2017  16.07.2020 21:54
  1) берем производную y!=cosx-(-sinx)=cosx+sinx
 2) приравниваем производную к 0  y!=cosx+sinx=0 и решаем это уравнение
находим критические точки
 cosx+sinx=0 делим на cosx  1+tgx=0  tgx=-1  x=-pi/4+pin
 3) чертим ось ОХ ,отмечаем критическую точку  x=-pi/4
 4),берем точки слева и справа от точки х=-пи.4
  х1=-пи.3  (левая точка)  х2=0 (правая  точка)
5) подставляем в уравнение производной 
 y!(-pi/3)=1+tg(-pi/3)=1+(-V3)=1-1.7=-0.7<0
y!(0)=1+tg0=1+pi=1+3.14=4.14>0
получили что у!(-pi/3)<0  y!(0)>0 => производная меняет знак с - на + =>
имеем минимум в точке х=-пи.4  (если знак производной меняется с + на - то мах у в точке где производная =0
вот и весь алгоритм
второй пример решу перед решением у меня сбрасывается решение
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра