Составьте уравнения тех касательных к графику функции y=0,5x²-2.5, которые пересекаются под углом 90° в точке, лежащей на оси y.

Elina1151 Elina1151    2   05.06.2019 03:20    0

Ответы
алан62 алан62  05.07.2020 19:18
Точка пересечения этого графика с  осью OY равна -2.5 , когда x=0 , то есть эти точка должны пересекаться в этих точках . 
Если первое касательная имеет вид 
y=kx+b то вторая k*k_{1}=-1\\
k=-\frac{1}{k_{1}}\\
y=-\frac{x}{k_{1}}+b\\\\
 
 Видно что они должны быть симметричны относительно точки пересечения . 
 Если (x_{0};y_{0}) это есть точка касательной к графику то у второй (-x_{0};y_{0}) .   
y=0.5x^2-2.5\\ y'=tga\\ 
x=tga\\
  То есть в итоге получим прямоугольный треугольник .   Заметим то что b<0 так как график сам расположен ниже оси OY 
 Рассмотрим треугольник  который образовался с осью oX;oY , он прямоугольный по условию прямые перпендикулярные , пользуясь запись уравнения прямых получаем что они делятся на равные углы по 45а 
 tg45а=1
откуда (x_{0};y_{0})=(1;y_{0})\\\\&#10;f(1)=-2\\&#10;f'(1)=1\\\\&#10; y=-2+1(x-1)=-2+x-1=x-3
  Вторая соответственно     y=-x-3
 
 
 
    
ПОКАЗАТЬ ОТВЕТЫ
Obsharovak Obsharovak  05.07.2020 19:18
Y=x^2/2-2.6
y'=x
Касательные образуют прямоугольный треугольник, углы при основании равны 45град
tg45=y'
x=1
находим касательную в тчоке х=1
f(1)=0.5-2.5=-2
f'(1)=1
y=-2+1(x-1)=-2+x-1=x-3
Т.к. касательные симметричны, то вторая имеет вид y=-x-3
ответ: y=x-3; y=-x-3
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра