Точка пересечения этого графика с осью равна , когда , то есть эти точка должны пересекаться в этих точках . Если первое касательная имеет вид то вторая Видно что они должны быть симметричны относительно точки пересечения . Если это есть точка касательной к графику то у второй .
То есть в итоге получим прямоугольный треугольник . Заметим то что так как график сам расположен ниже оси Рассмотрим треугольник который образовался с осью , он прямоугольный по условию прямые перпендикулярные , пользуясь запись уравнения прямых получаем что они делятся на равные углы по
Y=x^2/2-2.6 y'=x Касательные образуют прямоугольный треугольник, углы при основании равны 45град tg45=y' x=1 находим касательную в тчоке х=1 f(1)=0.5-2.5=-2 f'(1)=1 y=-2+1(x-1)=-2+x-1=x-3 Т.к. касательные симметричны, то вторая имеет вид y=-x-3 ответ: y=x-3; y=-x-3
Если первое касательная имеет вид то вторая
Видно что они должны быть симметричны относительно точки пересечения .
Если это есть точка касательной к графику то у второй .
То есть в итоге получим прямоугольный треугольник . Заметим то что так как график сам расположен ниже оси
Рассмотрим треугольник который образовался с осью , он прямоугольный по условию прямые перпендикулярные , пользуясь запись уравнения прямых получаем что они делятся на равные углы по
откуда
Вторая соответственно
y'=x
Касательные образуют прямоугольный треугольник, углы при основании равны 45град
tg45=y'
x=1
находим касательную в тчоке х=1
f(1)=0.5-2.5=-2
f'(1)=1
y=-2+1(x-1)=-2+x-1=x-3
Т.к. касательные симметричны, то вторая имеет вид y=-x-3
ответ: y=x-3; y=-x-3