Уравнение касательной к графику функции в точке х₀ записывается так:
y = f(x₀) + f'(x₀)·(x - x₀) (1)
Найдём f(x₀)
f(x₀) = f(π/3) = 3·π/3 - 5·cos(3·π/3) + 1 = π - 5·(-1) + 1 = π + 6
теперь производную функции f'(x)
f'(x) = 3 + 15·sin3х
f'(x₀) = f'(π/3) = 3 + 15·sin(3·π/3) = 3 + 15·0 = 3
Подставим полученное в (1)
y = π + 6 + 3·(x - π/3)
y = π + 6 + 3x - π
y = 3x + 6
Уравнение касательной к графику функции в точке х₀ записывается так:
y = f(x₀) + f'(x₀)·(x - x₀) (1)
Найдём f(x₀)
f(x₀) = f(π/3) = 3·π/3 - 5·cos(3·π/3) + 1 = π - 5·(-1) + 1 = π + 6
теперь производную функции f'(x)
f'(x) = 3 + 15·sin3х
f'(x₀) = f'(π/3) = 3 + 15·sin(3·π/3) = 3 + 15·0 = 3
Подставим полученное в (1)
y = π + 6 + 3·(x - π/3)
y = π + 6 + 3x - π
y = 3x + 6