левую часть преобразуем по формуле разности синусов
sin6x-sin4x=2sin((6x-4x)/2)*cos((6x+4x)/2)=2sinx*cos5x, тогда
2sinx*cos5x=0
1) sinx=0 или 2) cos5x=0
x=Пn 5х=П/2+ Пn
х=П/10+ Пn/5
ответ. 1) х=Пn, 2)х=П/10+ Пn/5
Решим уравнение с условия равенства одноименных тригонометрических функций
sin6x-sin4x=0
sin6x=sin4x
6x+4x=(пи)(2n+1) 6х-4х=2(пи)n
10х=(пи)(2n+1) 2х=2(пи)n
x=((пи)/10)(2n+1) х=(пи)n
x=((пи)/5)n+((пи)10)
левую часть преобразуем по формуле разности синусов
sin6x-sin4x=2sin((6x-4x)/2)*cos((6x+4x)/2)=2sinx*cos5x, тогда
2sinx*cos5x=0
1) sinx=0 или 2) cos5x=0
x=Пn 5х=П/2+ Пn
х=П/10+ Пn/5
ответ. 1) х=Пn, 2)х=П/10+ Пn/5
Решим уравнение с условия равенства одноименных тригонометрических функций
sin6x-sin4x=0
sin6x=sin4x
6x+4x=(пи)(2n+1) 6х-4х=2(пи)n
10х=(пи)(2n+1) 2х=2(пи)n
x=((пи)/10)(2n+1) х=(пи)n
x=((пи)/5)n+((пи)10)