Sin3x*cos(x+pi/4)+cos3x*sin(x+pi/4)=0 решить)

ShvarykValerua ShvarykValerua    2   30.06.2019 18:20    0

Ответы
Diasolataev Diasolataev  24.07.2020 10:24
sin3xcos(x+ \frac{ \pi }{4} )+cos3xsin(x+\frac{ \pi }{4} )=0

Заметим, что это выражение есть формула синуса суммы. Свернём в неё.

sin3xcos(x+ \frac{ \pi }{4} )+cos3xsin(x+\frac{ \pi }{4} )=sin(3x+x+\frac{ \pi }{4})=sin(4x+\frac{ \pi }{4}) \\ \\ sin(4x+\frac{ \pi }{4})=0 \\ \\ 4x+\frac{ \pi }{4}= \pi k \\ \\ 4x= -\frac{ \pi }{4} + \pi k\\ \\ x= - \frac{ \pi }{16} +\frac{ \pi k}{4}

ответ: - \frac{ \pi }{16} +\frac{ \pi k}{4}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра