Самостоятельная работа 7 класс Одночлены и многочлены
Вариант 1
1. Что не является одночленом:
а) hello_html_m26e5a4ae.gif
б) hello_html_1424592e.gif
в) hello_html_640d774d.gif
г) hello_html_66dffbe2.gif
2. Запишите одночлен в стандартном виде: hello_html_m348d66c5.gif
3. Найдите степень одночлена: hello_html_6194071.gif.
4. Найдите произведение одночленов hello_html_1cfa71ec.gif. Укажите коэффициент полученного одночлена.
5. Возведите одночлен в степень:
1) hello_html_m5907ca2e.gif
2) hello_html_m77ec8aab.gif
6. Приведите подобные слагаемые. Укажите степень полученного многочлена.
1) hello_html_4cf7288c.gif
2) hello_html_m6845db7e.gif
7. Найдите значение одночлена hello_html_23ed016b.gif при hello_html_3e4d912f.gif.
8. Приведите подобные слагаемые:
1) hello_html_4ddcc2e9.gif
2) hello_html_m14e1168d.gif
9. Решите уравнение: hello_html_m326d5c31.gif
10. Найдите значение многочлена при hello_html_617b93e1.gif.
hello_html_m69b78fd5.gif
- Ответ: а) hello_html_m26e5a4ae.gif, б) hello_html_1424592e.gif, в) hello_html_640d774d.gif и г) hello_html_66dffbe2.gif - все эти варианты не являются одночленами, так как они не удовлетворяют определению одночлена.
2. В стандартном виде одночлен записывается с переменной в начале, затем с коэффициентом.
- Ответ: hello_html_m348d66c5.gif записывается в стандартном виде как 5x.
3. Степень одночлена - это наивысшая степень переменной в одночлене.
- Ответ: hello_html_6194071.gif имеет степень 4.
4. Чтобы найти произведение одночленов hello_html_1cfa71ec.gif, нужно перемножить их коэффициенты и сложить степени переменной.
- Ответ: произведение одночленов hello_html_1cfa71ec.gif равно 12x^5, поскольку 3 * 4 = 12 и 2 + 3 = 5.
5. Чтобы возвести одночлен в степень, нужно умножить его самого на себя указанное количество раз.
- Ответ:
1) Возводим hello_html_m5907ca2e.gif в квадрат: (2x)^2 = 4x^2.
2) Возводим hello_html_m77ec8aab.gif в куб: (3x)^3 = 27x^3.
6. Чтобы привести подобные слагаемые, нужно сложить коэффициенты перед одинаковыми переменными и сохранить степень.
- Ответ:
1) Приводим подобные слагаемые в hello_html_4cf7288c.gif: 3x^2 + 4x^2 = 7x^2.
2) Приводим подобные слагаемые в hello_html_m6845db7e.gif: 2x^3 + 5x^3 = 7x^3.
7. Чтобы найти значение одночлена при заданном значении переменной, нужно подставить это значение вместо переменной и выполнить вычисления.
- Ответ: Подставляем hello_html_3e4d912f.gif вместо x в hello_html_23ed016b.gif: 2(3) - 5 = 1.
8. Чтобы привести подобные слагаемые, нужно сложить коэффициенты перед одинаковыми переменными и сохранить степень.
- Ответ:
1) Приводим подобные слагаемые в hello_html_4ddcc2e9.gif: 2x^2 + 5x^2 = 7x^2.
2) Приводим подобные слагаемые в hello_html_m14e1168d.gif: 3x^3 - 6x^3 = -3x^3.
9. Чтобы решить уравнение с одночленами, нужно как можно больше сложить или вычесть слагаемые с одинаковыми переменными, а затем решить полученное уравнение.
- Ответ: Решаем уравнение hello_html_m326d5c31.gif:
Выносим x за скобки: x(2x + 3) - 4 = 0.
Раскрываем скобку: 2x^2 + 3x - 4 = 0.
Далее, решаем это квадратное уравнение с помощью фоормул квадратного трехчлена или метода полного квадрата.
10. Чтобы найти значение многочлена при заданном значении переменной, нужно подставить это значение вместо каждой переменной и выполнить вычисления.
- Ответ: Подставляем hello_html_617b93e1.gif вместо x в hello_html_m69b78fd5.gif: (-3)^2 - 2(-3) + 5 = 9 + 6 + 5 = 20.