Объяснение: Я спростив вираз таким чином. Домножимо ліву і праву частину нерівності на 2ˣ. Основа степенної функції більше за 1, тож знак нерівності не зміниться.
(2ˣ+2¹⁻ˣ)·2ˣ≤3·2ˣ
2²ˣ+2¹⁻ˣ⁺ˣ-3·2ˣ≤0
(2ˣ)²-3·2ˣ+2≤0, зробимо заміну z=2ˣ
z²-3z+2≤0, знадемо корені рівняння z²-3z+2=0, D=9-4·2=1, z₁=1, z₂=2
На числовій прямій відкладемо z₁=1, z₂=2. За до методу інтервалів знайдемо рішення нерівності z²-3z+2≤0.
+ - +
12 z ∈ [1;2]
Або 1 ≤ z ≤ 2. Зворотня заміна. Знову повторюсь: через те що основа степеня більша за 1, знаки нерівності зберігаються.
ответ: 0 ≤ x ≤ 1
Объяснение: Я спростив вираз таким чином. Домножимо ліву і праву частину нерівності на 2ˣ. Основа степенної функції більше за 1, тож знак нерівності не зміниться.
(2ˣ+2¹⁻ˣ)·2ˣ≤3·2ˣ
2²ˣ+2¹⁻ˣ⁺ˣ-3·2ˣ≤0
(2ˣ)²-3·2ˣ+2≤0, зробимо заміну z=2ˣ
z²-3z+2≤0, знадемо корені рівняння z²-3z+2=0, D=9-4·2=1, z₁=1, z₂=2
На числовій прямій відкладемо z₁=1, z₂=2. За до методу інтервалів знайдемо рішення нерівності z²-3z+2≤0.
+ - +
12 z ∈ [1;2]
Або 1 ≤ z ≤ 2. Зворотня заміна. Знову повторюсь: через те що основа степеня більша за 1, знаки нерівності зберігаються.
1 ≤ z ≤ 2
1 ≤ 2ˣ ≤ 2
2⁰ ≤ 2ˣ ≤ 2¹
0 ≤ x ≤ 1