Воспольщуемся методом введения дополнительного угла: sqrt(2²+3²)=sqrt(13). Пусть sin a =2/sqrt(13), cos a ==3/sqrt(13). Тогда применяя формулу синуса суммы, получаем sin(x+a)=0. Тогда решениями будет x+a=pi*k, k целое число. Угол а запигем через обратные тригонометрические функции, итого ответ x=-arcsin(2/sqrt(13))+pi*k, k целое
поделим обе части на cosx
2 + 3tgx = 0
tgx = -2/3
x = arctg (-2/3)
Объяснение:
Воспольщуемся методом введения дополнительного угла: sqrt(2²+3²)=sqrt(13). Пусть sin a =2/sqrt(13), cos a ==3/sqrt(13). Тогда применяя формулу синуса суммы, получаем sin(x+a)=0. Тогда решениями будет x+a=pi*k, k целое число. Угол а запигем через обратные тригонометрические функции, итого ответ x=-arcsin(2/sqrt(13))+pi*k, k целое