решите уравнение,нужно ((2sin^2 x) / (1-cosx))=3

Theonly1385894 Theonly1385894    3   19.07.2019 00:40    0

Ответы
ovosh228322 ovosh228322  03.10.2020 07:29
Вспомним основное тригонометрическое тождество:
sin^2 x + cos^2 x = 1
Отсюда:
sin^2 = 1 - cos^2 x
Подставим это в числитель, а знаменатель перенесём вправо:
2 (1 - cos^2 x) = 3 (1-cos x)
Разложим левую часть как разность квадратов:
2 (1 - cos x) (1 + cos x) = 3 (1 - cos x)
Тут возникает соблазн сократить на одинаковый множитель, но надо рассмотреть вариант, когда этот множитель нулевой:
(1 - cos x) = 0
1 = cos x
x = arccos 1 = 0 + 2ПN, где N - 0,1,2...
Решением это являться не будет, так как такой х обращает в исходном выражении знаменатель в нуль, а на нуль, как известно, делить нежелательно!
Запомним, теперь сократим и продолжим с оставшейся частью:
2(1 + cos x) = 3
1 + cos x = 1,5
cos x = 0,5
x = arccos 0,5 = +-П/3 + 2ПN.
Это решение не пересекается с ранее полученными недопустимыми значениями, значит ответ:
x = {+-П/3 + 2ПN}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра