Решите тригонометрическте уравнение а) 2 sin x/2 + 1=0 б) 2cos x × cos4x-cosx=0 в) sinx+корень 3 × cosx=0 г) cos^2 х/2 - cos2x=1,25

katetolstoshev2 katetolstoshev2    3   20.07.2019 14:00    0

Ответы
bachko2012 bachko2012  22.09.2020 21:24
А) Sinx/2 = -1/2
    x/2 = (-1)^n arcSin(-1/2) + nπ, n ∈Z
    x/2 = (-1)^(n+1) *π/6 + nπ, n ∈Z
    x = (-1)^(n+1)*π/3 + 2nπ, n ∈Z
б) 2XosxCos4x - Cosx = 0
    Cosx(2Cos4x -1) = 0
Cosx = 0               или          2Cos4x -1=0
x = π/2 + πk , k ∈Z                 Cos4x = 1/2
                                               4x = +-arcCos1/2 + 2πn, n ∈Z
                                               4x = +- π/3 + 2πn, n ∈Z
                                               x = +-π/12 + πn/2 , n ∈Z 
в) Sinx +√3Cosx = 0
Sinx = -√3Cos x |²
Sin²x = 3Cosx
1 - Cos²x = 3Cosx
Cos²x +3 Cosx -1 = 0
решаем как квадратное
D = 13
Cosx = (-3+√13)/2 нет решений.
Сosx = (-3 -√13)/2 нет решений
ПОКАЗАТЬ ОТВЕТЫ