ОДЗ: ∈ ∞
+ - +
-------------(2)-------------(4)-------------
//////////////// ////////////////
С учётом ОДЗ получаем
ответ: ∪ ∞
{3x-1>0⇒x>1/3
{x-1>0⇒x>1
{x+18>0⇒x>-18
{x+2>0⇒x>-2
x∈(1;∞)
log(0,5)[(3x-1)/(x-1)]<log(0,5)[(x+18)/(x+2)]
(3x-1)/(x-1)>(x+18)/(x+2)
(3x-1)/(x-1)-(x+18)/(x+2)>0
(3x²+6x-x-2-x²-18x+x+18)/[(x-1)(x+2)]>0
(2x²-12x+16)/[(x-1)(x+2)]>0
2(x²-6x+8)=0
x1+x2=6 U x1*x2=8⇒x1=2 U x2=4
x-1=0⇒x=1
x+2=0⇒x=-2
+ _ + _ +
(-1)(1)(2)(4)
x∈(1;2) U (4;∞)
ОДЗ:
∈ ∞
+ - +
-------------(2)-------------(4)-------------
//////////////// ////////////////
С учётом ОДЗ получаем
ответ: ∪ ∞