Решите неравенство 3x-x^2>0​

baller59 baller59    1   06.11.2020 06:28    0

Ответы
Азека2008 Азека2008  12.02.2021 16:47

Найдем решение уравнения 3x-x^2=0, корни отметим на числовой прямой и определим, какие знаки на каждом из отрезков принимает выражение 3x-x^2. Итак, решим уравнение 3x-x^2=0:

В левой части уравнения вынесем за скобки общий множитель х: х(3-х)=0

Произведение двух множителей равно нулю, когда хотя бы один из множителей равен 0, решим совокупность: х=0 или 3-х=0, решением такой совокупности : х=0 и х=3. Эти корни делят числовую прямую на 3 промежутка, определим знак выражения на каждом из них:

(-∞;0): пусть х=-1, тогда: 3*(-1)-(-1)^2=-3+1=-2, -2<0

(0;3): пусть х=2, тогда: 3*(2)-2^2=6-4=2, 2>0

(3;+∞): пусть х=4, тогда: 3*4-4^2=12-16=-4, -4<0

ответ: х=(0;3)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра