Решите 3sin 2 x = 2 sin х cos х + cos^2 5 sin^2x - 2 sin х cos х + cos^2=4

alekseyovsyann alekseyovsyann    1   13.08.2019 15:40    0

Ответы
nkds00005 nkds00005  04.10.2020 16:15
3sin^2x=2sinxcosx+cos^2x |cos^2x
3tg^2x=2tgx+1
3tg^2x-2tgx-1=0 tgx=t замена
3t^2-2t-1=0
D=4-4*3*(-1)=16
t1=2+-4/6=1
t2=-1/3
tgx=1
x=п/4+пn,n€z
tgx=-1/3
x=-arctg1/3+пn,n€z
2)5sin^2x-2sinxcosx+cos^2x=4
5sin^2x-2sinxcosx+cos^2x=4sin^2x+4cos^2x=0 ну 4*1 а 1 представляем как основное триг. тождество , надеюсь понятно , теперь делим всё cos^2x и получаем
5tg^2x-2tgx+1=4tg^2x+4
5tg^2x-2tgx+1-4tg^2x-4=0
tg^2x-2tgx-3=0 привели подобные слагаемые .Замена tgx=t
t^2-2t-3=0
D=4-4*(-3)=16
t1=2+-4/2=3
t2=-1
Возвращаемся к тангесу
tgx=3
x=arctg3+пn,n€z
tgx=-1
x=-п/4+пn,n€z
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра