a, b - стороны прямоугольника.
Из формулы периметра получаем
2(a+b)=14
a+b=7
По теореме Пифагора
d²=a²+b²
5²=a²+b²
25=a²+b²
Имеем систему двух уравнений
\left \{ {{a+b=7} \atop {a^2+b^2=25}} \right.{
a
2
+b
=25
Из первого уравнения выразим b и подставим во второе
b=7-a
a²+(7-a)²=25
a²+49-14a+a²-25=0
2a²-14a+24=0
a²-7a+12=0
D=7²-4*12=49-48=1
√D=1
a₁=(7-1)/2=3
b₁=7-3=4
a₂=(7+1)/2=4
b₂=7-4=3
Поскольку нам несущественно, где длина, а где ширина прямоугольника, даем один ответ.
ответ: 3 см и 4 см
a, b - стороны прямоугольника.
Из формулы периметра получаем
2(a+b)=14
a+b=7
По теореме Пифагора
d²=a²+b²
5²=a²+b²
25=a²+b²
Имеем систему двух уравнений
\left \{ {{a+b=7} \atop {a^2+b^2=25}} \right.{
a
2
+b
2
=25
a+b=7
Из первого уравнения выразим b и подставим во второе
b=7-a
a²+(7-a)²=25
a²+49-14a+a²-25=0
2a²-14a+24=0
a²-7a+12=0
D=7²-4*12=49-48=1
√D=1
a₁=(7-1)/2=3
b₁=7-3=4
a₂=(7+1)/2=4
b₂=7-4=3
Поскольку нам несущественно, где длина, а где ширина прямоугольника, даем один ответ.
ответ: 3 см и 4 см