2(n-1)! / (n-3)! - n = 8
n! = 1*2*3*...*n
n>=3 n∈N
2 * 1*2*3*...*(n-3)*(n-2)*(n-1) / 1*2*3**(n-3) - n = 8
2*(n-2)(n-1) - n - 8 = 0
2(n² - 2n - n + 2) - n - 8 = 0
2n² - 6n + 4 - n - 8 = 0
2n² -7n - 4 = 0
D=49 + 4*4*2 = 81
n12= (7 +- 9)/4 = - 1/2 4
n = 4
Проверка 2*3!/1! - 4 = 2*6 - 4 = 8
2(n-1)! / (n-3)! - n = 8
n! = 1*2*3*...*n
n>=3 n∈N
2 * 1*2*3*...*(n-3)*(n-2)*(n-1) / 1*2*3**(n-3) - n = 8
2*(n-2)(n-1) - n - 8 = 0
2(n² - 2n - n + 2) - n - 8 = 0
2n² - 6n + 4 - n - 8 = 0
2n² -7n - 4 = 0
D=49 + 4*4*2 = 81
n12= (7 +- 9)/4 = - 1/2 4
n = 4
Проверка 2*3!/1! - 4 = 2*6 - 4 = 8