f(x)=cos²(x/4)-sin²(x/4)=cos(2*(x/4))=cos(x/2)
f'(x)=-sin(x/2)*(1/2)=-sin(x/2)/2=0
-sin(x/2)/2=0 |×(-2)
sin(x/2)=0
x/2=πn |×2
x=2πn.
f(x)=cos²(x/4)-sin²(x/4)=cos(2*(x/4))=cos(x/2)
f'(x)=-sin(x/2)*(1/2)=-sin(x/2)/2=0
-sin(x/2)/2=0 |×(-2)
sin(x/2)=0
x/2=πn |×2
x=2πn.