Решить уравнение 2cos в квадрате x - 3sinx= 1/2

indyouk014 indyouk014    3   21.09.2019 16:00    0

Ответы
1SnakeDen1 1SnakeDen1  08.10.2020 07:29
2cos²x - 3sinx = 1/2,
cos²x + sin²x ≡ 1,
cos²x ≡ 1 - sin²x,
2*(1-sin²x) - 3sinx = 1/2,
2 - 2sin²x - 3sinx = 1/2, 
2sin²x + 3sinx + (1/2) - 2 = 0,
2sin²x + 3sinx - 1,5 = 0, домножим последнее уравнение на 2
4sin²x + 6sinx - 3 = 0,
делаем замену sinx = t,
4*t² + 6t - 3 = 0,
D = 6² - 4*(-3)*4 = 36 + 12*4 = 36+48 = 84 = 4*21,
t =\frac{-6\pm \sqrt{4\cdot 21}}{2\cdot 4} = \frac{-3\pm \sqrt{21}}{4}
t_1 = \frac{-3-\sqrt{21}}{4} Этот корень не годится, поскольку для любого икса -1≤sin(x)≤1.
t_2 = \frac{-3+\sqrt{21}}{4}
\sin(x) = \frac{-3+\sqrt{21}}{4}
x = (-1)^k arcsin(\frac{-3+\sqrt{21}}{4}) + \pi k
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра