Решаем через единичную окружность: 1) Проведем прямую y = -0.5 2) "Сотрем" ненужную часть окружности (все, что ниже этой прямой) 3) Обозначим точки пересечения прямой с окружностью: -π/6 и 7π/6 4) Решением является верхняя часть окружности (не пунктиром), двигаемся по ней против часовой стрелки, получаем: -π/6 + 2πk ≤ x ≤ 7π/6 + 2πk, k∈Z
1) Проведем прямую y = -0.5
2) "Сотрем" ненужную часть окружности (все, что ниже этой прямой)
3) Обозначим точки пересечения прямой с окружностью: -π/6 и 7π/6
4) Решением является верхняя часть окружности (не пунктиром), двигаемся по ней против часовой стрелки, получаем: -π/6 + 2πk ≤ x ≤ 7π/6 + 2πk, k∈Z