Решить неравенство:
f ' (x) > 0, если f(x) = 9х3 + 3х2

Ivan4554 Ivan4554    1   23.06.2020 15:16    8

Ответы
dariyakazakova1 dariyakazakova1  15.10.2020 14:45

f(x) = 9x^{3} + 3x^{2}

f'(x) = 9 \cdot 3x^{2} + 3 \cdot 2x = 27x^{2} + 6x

Решим неравенство f'(x) 0, то есть 27x^{2} + 6x 0

27x^{2} + 6x 0

3x(9x + 2) 0

\left[\begin{array}{ccc}\displaystyle \left \{ {{3x 0, \ \ \ \ \, } \atop {9x + 2 0}} \right. \\\displaystyle \left \{ {{3x < 0, \ \ \ \ \, } \atop {9x + 2 < 0}} \right.\\\end{array}\right \ \ \ \ \ \ \ \left[\begin{array}{ccc}\displaystyle \left \{ {{x 0, \ \ \, } \atop {x -\dfrac{2}{9} }} \right. \\\displaystyle \left \{ {{x < 0, \ \ \, } \atop {x < -\dfrac{2}{9}}} \right.\\\end{array}\right \ \ \ \ \ \left[\begin{array}{ccc}x 0, \ \ \\x < -\dfrac{2}{9} \\\end{array}\right

x \in \left(-\infty; \ -\dfrac{2}{9} \right) \cup (0; \ +\infty)

ответ: x \in \left(-\infty; \ -\dfrac{2}{9} \right) \cup (0; \ +\infty)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра