Logx²(x+2)²≤1 Рассмотрим выполнение условий данного неравенства. Основание логарифма должно быть положительным и не равным 1.У нас основание х², то есть оно будет всегда положительным и х²≠1, а значит х≠+/-1.Поэтому х∈(-∞;-1)∨(-1;0)∨(0;1)∨(1;+∞). Значение интеграла всегда положительное число. У нас оно имеет вид (х+2)², то есть всегда положительное. Единственное, что оно не должно равняться 0. (х+2)²≠0 х+2≠0 х≠-2. Теперь записываем полное решение этого неравенства: х∈(-∈;-2)∨(-2;-1)∨(-1;0)∨(0;1)∨(1;+∞).
Основание логарифма должно быть положительным и не равным 1.У нас основание х², то есть оно будет всегда положительным и х²≠1, а значит
х≠+/-1.Поэтому х∈(-∞;-1)∨(-1;0)∨(0;1)∨(1;+∞).
Значение интеграла всегда положительное число. У нас оно имеет вид
(х+2)², то есть всегда положительное. Единственное, что оно не должно равняться 0. (х+2)²≠0 х+2≠0 х≠-2.
Теперь записываем полное решение этого неравенства:
х∈(-∈;-2)∨(-2;-1)∨(-1;0)∨(0;1)∨(1;+∞).