Решить ДУ
y’’-3y’=0
у=1, у’=-1, при х=0

geptor2012 geptor2012    3   18.06.2020 12:55    0

Ответы
Barkinhoev06isl Barkinhoev06isl  06.08.2020 16:24

ответ: y=-1/3*e^(3*x)+4/3.

Объяснение:

Полагая z=y', приходим к уравнению z'-3*z=0, которое можно записать в виде z'=dz/dx=3*z, или dz/z=3*dx. Интегрируя обе части, получаем ln/z/=3*x+ln/C1/, где C1 - произвольная, но отличная от нуля постоянная. Отсюда z=y'=C1*e^(3*x). Это уравнение можно записать в виде dy=C1*e^(3*x)*dx, и после интегрирования находим y=1/3*C1*e^(3*x)+C2. Используя условия y(0)=1 и y'(0)=-1, получаем систему уравнений:

1/3*C1+C2=1

C1=-1

Решая её, находим C2=4/3 и тогда искомое частное решение таково: y=-1/3*e^(3*x)+4/3. Проверка: y'=-e^(3*x), y"=-3*e^(3*x), y"-3*y'=0 - уравнению данная функция удовлетворяет. Если x=0, то y=1 и y'=-1 - функция удовлетворяет и условиям.  

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра