решить, 1.1.1. Профсоюзное бюро факультета, состоящее из 9 человек, на своём
заседании должно избрать председателя, его заместителя и казначея. Сколько различных случаев при этом должно быть?
1.1.2. Старший менеджер офиса фирмы должен отправить в командировку группу из 5 человек. Сколько таких групп можно составить из 12 сотрудников офиса, занимающих одинаковые должности и выполняющих одинаковые функции?
1.1.1: 504 варианта
1.1.2: 792 варианта
Объяснение:
1.1.1. Поскольку все 3 выборных должности различны, то при выборе 3 из 9 кандидатов также важен и порядок выбора. То есть требуется найти число размещений 3 элементов (выборные должности) из 9 (число кандидатов).
Это производится по формуле:
В нашем случае n=9; k=3. Т.е.
ответ: 504 различных случая возможно.
1.1.2
Поскольку у нас нет известных различий среди 5 командированных сотрудников, то порядок их выбора значения не имеет (размещение элементов внутри выборки не учитывается - считается как 1 вариант), то при выборе 5 человек из 12 кандидатов порядок выбора не важен. То есть требуется найти число сочетаний 5 элементов (число командировок) из 12 (число кандидатов).
Это производится по формуле:
В нашем случае n=15; k=5. Т.е. число сочетаний равно
792 варианта групп