У нас есть два уравнения:
1) u = 7 + v
2) u - 2v + 1 = 3
Шаг 1: Мы можем начать с уравнения 1), где u выражено через v. Мы можем заменить u в уравнении 2) на его эквивалентное значение, полученное из уравнения 1):
7 + v - 2v + 1 = 3
Шаг 2: Теперь объединим подобные слагаемые, сложив числа справа и слева от знака равенства:
8 - v = 3
Шаг 3: Чтобы решить это новое уравнение, необходимо избавиться от отрицательного коэффициента перед v. Для этого мы можем умножить обе части уравнения на -1:
-v = 3 - 8
Шаг 4: Выполним вычисления, чтобы упростить уравнение:
-v = -5
Шаг 5: Чтобы найти значение v, умножим обе части уравнения на -1, чтобы избавиться от отрицательного знака:
v = 5
Шаг 6: Теперь, когда значение v найдено, мы можем подставить его обратно в уравнение 1), чтобы найти значение u:
u = 7 + 5
u = 12
Ответ: u = 12, v = 5.
Таким образом, решение системы уравнений состоит в том, что u равно 12, а v равно 5.
У нас есть два уравнения:
1) u = 7 + v
2) u - 2v + 1 = 3
Шаг 1: Мы можем начать с уравнения 1), где u выражено через v. Мы можем заменить u в уравнении 2) на его эквивалентное значение, полученное из уравнения 1):
7 + v - 2v + 1 = 3
Шаг 2: Теперь объединим подобные слагаемые, сложив числа справа и слева от знака равенства:
8 - v = 3
Шаг 3: Чтобы решить это новое уравнение, необходимо избавиться от отрицательного коэффициента перед v. Для этого мы можем умножить обе части уравнения на -1:
-v = 3 - 8
Шаг 4: Выполним вычисления, чтобы упростить уравнение:
-v = -5
Шаг 5: Чтобы найти значение v, умножим обе части уравнения на -1, чтобы избавиться от отрицательного знака:
v = 5
Шаг 6: Теперь, когда значение v найдено, мы можем подставить его обратно в уравнение 1), чтобы найти значение u:
u = 7 + 5
u = 12
Ответ: u = 12, v = 5.
Таким образом, решение системы уравнений состоит в том, что u равно 12, а v равно 5.