1. Неравенства одного знака можно складывать: a > b, c > d, тогда
a + c > b + d.
2. Части неравенства можно умножить на одно и то же, не равное нулю число. Если число отрицательное, то знак неравенства изменится на противоположный: a > b, c > 0, тогда ac > bc; a > b, c < 0, тогда ac < bc.
Имеем: a > 5, b > 1, c > 3.
Тогда 2а > 10, bc > 3, значит, 3bc > 9 и, следовательно, 2а + 3bc > 19.
Свойства числовых неравенств:
1. Неравенства одного знака можно складывать: a > b, c > d, тогда
a + c > b + d.
2. Части неравенства можно умножить на одно и то же, не равное нулю число. Если число отрицательное, то знак неравенства изменится на противоположный: a > b, c > 0, тогда ac > bc; a > b, c < 0, тогда ac < bc.
Имеем: a > 5, b > 1, c > 3.
Тогда 2а > 10, bc > 3, значит, 3bc > 9 и, следовательно, 2а + 3bc > 19.
Таким образом, 2а + 3bc > 15.
Доказано.