Про числа a и b известно что a + 1 / b равно 7 и b + 1 / a равно 8 найдите значение выражения ab + 1 / a b

Sofia0715 Sofia0715    1   05.10.2019 16:20    0

Ответы
NiKoOl18 NiKoOl18  09.10.2020 22:00

Составим систему и определим значения A и B:

\left \{ {\bigg{A + \dfrac{1}{B} = 7 \ (1)} \atop \bigg{B + \dfrac{1}{A} = 8 \ (2)}} \right. \\(1)\ A = 7 - \dfrac{1}{B} = \dfrac{7B - 1}{B}\\(2)\ B + \dfrac{1}{\dfrac{7B - 1}{B}} = 8\\B + \dfrac{B}{7B - 1} = 8\\\dfrac{B(7B-1) + B}{7B-1} = 8\\\dfrac{7B^{2}}{7B - 1} = 8\\ 7B^{2} = 8(7B - 1)\\7B^{2} = 56B - 8

7B^{2} - 56B + 8 = 0\\a = 7; \ b = -56; \ c = -8\\D = b^{2} - 4ac = (-56)^{2} - 4 \ \cdotp 7 \ \cdotp 8 = 3136 - 224 = 2912\\B_{1,2} = \dfrac{-b \pm\sqrt{D}}{2a} = \dfrac{-(-56) \pm\sqrt{2912}}{2 \ \cdotp 7} = \dfrac{56 \pm 4\sqrt{182}}{14} = \dfrac{2(28 \pm 2\sqrt{182})}{14} =\\\\= \dfrac{28 \pm 2\sqrt{182}}{7} = \left[\begin{array}{ccc}B_{1} = \dfrac{28 + 2\sqrt{182}}{7}\\B_{2} = \dfrac{28 - 2\sqrt{182}}{7}\end{array}\right

(1) \ A_{1} = \dfrac{7\ \cdotp \dfrac{28 + 2\sqrt{182}}{7} - 1}{\dfrac{28 + 2\sqrt{182}}{7}} = \dfrac{(28 + 2\sqrt{182} - 1)\ \cdotp 7}{28 + 2\sqrt{182}}} = \dfrac{(27 + 2\sqrt{182})\ \cdotp 7}{28 + 2\sqrt{182}}} =\\\\= \dfrac{189 + 14\sqrt{182}}{28 + 2\sqrt{182}}} = \dfrac{(189 + 14\sqrt{182})(28 - 2\sqrt{182})}{(28 + 2\sqrt{182})(28 - 2\sqrt{182})}} = \dfrac{7(27 + 2\sqrt{182})\ \cdotp 2(14 - \sqrt{182})}{784 - 4 \ \cdotp 182} =

= \dfrac{7(27 + 2\sqrt{182})\ \cdotp 2(14 - \sqrt{182})}{56} = \dfrac{(27 + 2\sqrt{182})(14 - \sqrt{182})}{4} = \\\\= \dfrac{378 - 27\sqrt{182} + 28\sqrt{182} - 364}{4} = \dfrac{14 + \sqrt{182}}{4}

(1) \ A_{2} = \dfrac{7\ \cdotp \dfrac{28 - 2\sqrt{182}}{7} - 1}{\dfrac{28 - 2\sqrt{182}}{7}} = \dfrac{(28 - 2\sqrt{182} - 1)\ \cdotp 7}{28 - 2\sqrt{182}}} = \dfrac{(27 - 2\sqrt{182})\ \cdotp 7}{28 - 2\sqrt{182}}} =\\\\= \dfrac{189 - 14\sqrt{182}}{28 - 2\sqrt{182}}} = \dfrac{(189 - 14\sqrt{182})(28 + 2\sqrt{182})}{(28 - 2\sqrt{182})(28 + 2\sqrt{182})}} = \dfrac{7(27 - 2\sqrt{182})\ \cdotp 2(14 + \sqrt{182})}{784 - 4 \ \cdotp 182} =

= \dfrac{7(27 - 2\sqrt{182})\ \cdotp 2(14 + \sqrt{182})}{56} = \dfrac{(27 - 2\sqrt{182})(14 + \sqrt{182})}{4} = \\\\= \dfrac{378 + 27\sqrt{182} - 28\sqrt{182} - 364}{4} = \dfrac{14 - \sqrt{182}}{4}

Высчитываем выражение AB + \dfrac{1}{AB}, подставляя значения букв A и B:

1) \ A_{1}B_{1} + \dfrac{1}{A_{1}B_{1}} = \dfrac{14 + \sqrt{182}}{4}\ \cdotp \dfrac{28 + 2\sqrt{182}}{7} + \dfrac{1}{\dfrac{14 + \sqrt{182}}{4}\ \cdotp \dfrac{28 + 2\sqrt{182}}{7}} = \\\\= \dfrac{(14 + \sqrt{182}) \ \cdotp 2(14 + \sqrt{182})}{4 \ \cdotp 7} + \dfrac{1}{\dfrac{(14 + \sqrt{182}) \ \cdotp 2(14 + \sqrt{182})}{4 \ \cdotp 7}} =\\= \dfrac{(14 + \sqrt{182})^{2}}{14} + \dfrac{1}{\dfrac{(14 + \sqrt{182})^{2}}{14}} = \dfrac{378 + 28\sqrt{182}}{14} + \dfrac{1}{\dfrac{378 + 28\sqrt{182}}{14}} =

= \dfrac{14(27 + 2\sqrt{182})}{14} + \dfrac{1}{\dfrac{14(27 + 2\sqrt{182})}{14}} = 27 + 2\sqrt{182} + \dfrac{1}{27 + 2\sqrt{182}} =\\\\= \dfrac{(27 + 2\sqrt{182})^{2} + 1}{27 + 2\sqrt{182}} = \dfrac{1457 + 108\sqrt{182} + 1}{27 + 2\sqrt{182}} = \dfrac{1458 + 108\sqrt{182}}{27 + 2\sqrt{182}} = \dfrac{54(27 + 2\sqrt{182})}{27 + 2\sqrt{182}} =\\\\= 54

2) \ A_{2}B_{2} + \dfrac{1}{A_{2}B_{2}} = \dfrac{14 - \sqrt{182}}{4}\ \cdotp \dfrac{28 - 2\sqrt{182}}{7} + \dfrac{1}{\dfrac{14 - \sqrt{182}}{4}\ \cdotp \dfrac{28 - 2\sqrt{182}}{7}} = \\\\= \dfrac{(14 - \sqrt{182}) \ \cdotp 2(14 - \sqrt{182})}{4 \ \cdotp 7} + \dfrac{1}{\dfrac{(14 - \sqrt{182}) \ \cdotp 2(14 - \sqrt{182})}{4 \ \cdotp 7}} =\\= \dfrac{(14 - \sqrt{182})^{2}}{14} + \dfrac{1}{\dfrac{(14 - \sqrt{182})^{2}}{14}} = \dfrac{378 - 28\sqrt{182}}{14} + \dfrac{1}{\dfrac{378 - 28\sqrt{182}}{14}} =

= \dfrac{14(27 - 2\sqrt{182})}{14} + \dfrac{1}{\dfrac{14(27 - 2\sqrt{182})}{14}} = 27 - 2\sqrt{182} + \dfrac{1}{27 - 2\sqrt{182}} =\\\\= \dfrac{(27 - 2\sqrt{182})^{2} + 1}{27 - 2\sqrt{182}} = \dfrac{1457 - 108\sqrt{182} + 1}{27 - 2\sqrt{182}} = \dfrac{1458 - 108\sqrt{182}}{27 - 2\sqrt{182}} = \dfrac{54(27 - 2\sqrt{182})}{27 - 2\sqrt{182}} =\\\\= 54

ответ: 54.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра