Анализ производной позволит узнать где находяться точки экстреумума, а также где функция возрастает а где убывает:
f(x)'=2(x-3)
f(x)'=0 <=> 2(x-3)=0 => x=3
смотрим знаки производное методом интервалов до x=3 и после : если знаки разные, т это точка экстремума, причем если знак меняется с + на -, то это точка максимума, и наоборот. Соответственно график функции убывает до x=3 и возрастает после него. Точка экстремума (3; 2)- точка минимума
f(x)=(x-3)^2+2
Анализ производной позволит узнать где находяться точки экстреумума, а также где функция возрастает а где убывает:
f(x)'=2(x-3)
f(x)'=0 <=> 2(x-3)=0 => x=3
смотрим знаки производное методом интервалов до x=3 и после : если знаки разные, т это точка экстремума, причем если знак меняется с + на -, то это точка максимума, и наоборот. Соответственно график функции убывает до x=3 и возрастает после него. Точка экстремума (3; 2)- точка минимума