При каких значениях k функция y = e^kx удовлетворяет условию 2y"' - 11y" + 19y' - 10y = 0 ?

mialoma mialoma    3   09.06.2019 19:20    0

Ответы
саранчаа9 саранчаа9  08.07.2020 13:04
Это еще не дифференциальное уравнение. Это задание на определение. Что называется решением дифференциального уравнения. ответ. Функция, при подстановке в уравнение которой и её производных, получается верное равенство.
Находим
y`=e ^{kx} \cdot k, \\ y``=e ^{kx} \cdot k ^{2} , \\ y```=e ^{kx}\cdot k ^{3}

Подставим в уравнение:
2(e ^{kx}\cdot k ^{3} )-11(e ^{kx}\cdot k ^{2})+19(e ^{kx}\cdot k)-10\cdot e ^{kx}=0, \\ e ^{kx} (2k ^{3} -11k ^{2} +19k-10)=0

Первый множитель e ^{kx} 0
Приравниваем к нулю второй множитель и решаем уравнение:
2k³-11k²+19k-10=0
подставновкой убеждаемся, что k=1 является корнем этого уравнения:
2-11+19-10=0, 21-21=0-верно
делим 2k³-11k²+19k-10  на k-1
получаем
(2k²-9k+10)(k-1)=0,
2k²-9k+10=0,
D=(-9)²-4·2·10=81-80=1
k=(9-1)/4=2    или    k=(9+1)/4=10/4=5/2

ответ при k=1, k=2, k= 2,5
ПОКАЗАТЬ ОТВЕТЫ
olesia170202 olesia170202  08.07.2020 13:04
Для начала найти производную первого, второго и третьего порядка от функции у=е^kx,
у'=ke^kx
y''=k²(e^kx)
y'''=k³(e^kx).
Подставим саму функцию и её производные в уравнение, имеем:
2k³(e^kx)-11k²(e^kx)+19ke^kx-10e^kx=0
Вынесем e^kx за скобки: e^kx(2k³-11k²+19k-10)=0
e^kx=0 решений нет.
2k³-11k²+19k-10=0
Уравнение имеет три корня k1=1, k2=2,5 k3=2. Это ответ.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра