Итак, чтобы уравнение имело смысл, а должно быть больше нуля. По свойству модуля: 1)x^2-5ax=15a 2)x^2-5ax=-15a Решим первое уравнение: x^2-5ax-15a=0 Чтобы квадратное уравнение имело два корня, D(дискриминант) должен быть больше нуля: D=(-5a)^2-4*(-15a)=25a^2+60a=5a(5a+12)>0 +(-2,4)-(0)+
a e (0; + беск.) Нас не устраивает промежуток a e (-беск.; -2,4) 2)x^2-5ax=-15a x^2-5ax+15a=0 D=(-5a)^2-4*15a=25a^2-60a=5a(5a-12)>0 +(0)-(2,4)+ a e (2,4; + беск.) Нас не устраивает промежуток a e (-беск.;0) Объединяя два решения, получаем: ответ: a e (2,4; + беск.)
______+______(0)___-____(2.4)___+_____
_+_(-2.4)___-____(0)______+______
Отсюда, при уравнение имеет 2 действительных корней
По свойству модуля:
1)x^2-5ax=15a
2)x^2-5ax=-15a
Решим первое уравнение:
x^2-5ax-15a=0
Чтобы квадратное уравнение имело два корня, D(дискриминант) должен быть больше нуля:
D=(-5a)^2-4*(-15a)=25a^2+60a=5a(5a+12)>0
+(-2,4)-(0)+
a e (0; + беск.)
Нас не устраивает промежуток a e (-беск.; -2,4)
2)x^2-5ax=-15a
x^2-5ax+15a=0
D=(-5a)^2-4*15a=25a^2-60a=5a(5a-12)>0
+(0)-(2,4)+
a e (2,4; + беск.)
Нас не устраивает промежуток a e (-беск.;0)
Объединяя два решения, получаем:
ответ: a e (2,4; + беск.)