Воспользуемся методом неопределенных коэффициентов. данный многочлен может расложится на произведения двух квадратных трехчленов: x^4-7x^2+1=(x^2+ax+b)(x^2+cx+d) (x^2+ax+b)(x^2+cx+d)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd=x^4+(cx^3+ax^3)+(dx^2+acx^2+bx^2)+(adx+bcx)+bd=x^4+(c+a)*x^3+(d+ac+b)*x^2+(ad+bc)*x+bd составляем систему: c+a=0 d+ac+b=-7 ad+bc=0 bd=1 решаем: так как коэффиценты целые, то в равенстве bd=1 либо b=-1 и d=-1 либо b=1 и d=1 подставляем: c+a=0 -1+ac-1=-7 -a-c=0 c=-a -1-a^2-1=-7 -a^2=-7+2 a^2=5 a - нецелое, значит эти значения b и d не подходят. проверяем 2 вариант: c+a=0 1+ac+1=-7 a+c=0 c=-a 1-a^2+1=-7 -a^2=-7-2 -a^2=-9 a^2=9 a1=3; a2=-3 c1=-3; c2=3 получим: x^4-7x^2+1=(x^2+3x+1)(x^2-3x+1) или x^4-7x^2+1=(x^2-3x+1)(x^2+3x+1) ответ: x^4-7x^2+1=(x^2+3x+1)(x^2-3x+1)
данный многочлен может расложится на произведения двух квадратных трехчленов:
x^4-7x^2+1=(x^2+ax+b)(x^2+cx+d)
(x^2+ax+b)(x^2+cx+d)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd=x^4+(cx^3+ax^3)+(dx^2+acx^2+bx^2)+(adx+bcx)+bd=x^4+(c+a)*x^3+(d+ac+b)*x^2+(ad+bc)*x+bd
составляем систему:
c+a=0
d+ac+b=-7
ad+bc=0
bd=1
решаем:
так как коэффиценты целые, то в равенстве bd=1 либо b=-1 и d=-1 либо b=1 и d=1
подставляем:
c+a=0
-1+ac-1=-7
-a-c=0
c=-a
-1-a^2-1=-7
-a^2=-7+2
a^2=5
a - нецелое, значит эти значения b и d не подходят. проверяем 2 вариант:
c+a=0
1+ac+1=-7
a+c=0
c=-a
1-a^2+1=-7
-a^2=-7-2
-a^2=-9
a^2=9
a1=3; a2=-3
c1=-3; c2=3
получим:
x^4-7x^2+1=(x^2+3x+1)(x^2-3x+1)
или
x^4-7x^2+1=(x^2-3x+1)(x^2+3x+1)
ответ: x^4-7x^2+1=(x^2+3x+1)(x^2-3x+1)
Представьте x⁴ - 7x² + 1 в виде произведения двух многочленов с целыми коэффициентами .
Решение:
x⁴ - 7x² + 1 =(x)² +2x² + 1 - 9x² = (x²+1)² -(3x)² = (x² +1 -3x)*(x² +1 +3x) .
ответ : (x² -3x +1)(x² +3x +1) .