Постройте отрицание высказывания двумя и определите значение истинности. с: квадрат любого числа есть число положительное

kato99 kato99    3   29.07.2019 04:50    4

Ответы
silverking silverking  07.08.2020 17:00
Ну, я буду писать высказывание словами, а потом математически, думаю, это будет тебе полезно и понять.
Итак, дано: квадрат любого числа есть число положительное. Запишем это математически (скобки для наглядности):
\forall x \ (x^2\ \textgreater \ 0).

Отрицание первым раскрытие квантора. Существует число, квадрат которого неположителен. Математически:
! \left[ \forall x \ (x^2\ \textgreater \ 0)\right] \Leftrightarrow \exists x \ (x^2 \leq 0).

Отрицание вторым я не знаю, как построить, важно, что приводит это к одному и тому же высказыванию в конце концов.
Ну, а истинность установить однозначно нельзя. Если рассматривать это высказывание на множестве натуральных чисел, то оно истинно. Квадрат любого натурального числа положителен, потому что произведение двух положительных чисел положительно.
А если, например, над целыми числами - то оно ложно. Контрпример: x = 0. Квадрат такого числа не является числом положительным.
Если же рассматривать это высказывание над комплексными числами, найдутся и другие контрпримеры, например, x=i
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра