В решении.
Объяснение:
Построй график функции у=3х²+2х-5.
График - парабола со смещённым центром, ветви направлены вверх, придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 16 3 -4 -5 0 11 28
По графику найдите:
1)область значений функции;
Область значений функции - это проекция графика на ось Оу, ограниченная ординатой вершины параболы, обозначается Е(у). Ордината вершины = -5,3.
Е(у) = у∈(-5,3; +∞).
2) промежутки монотонности функции.
Функция возрастает при х∈(-0,3; + ∞);
Функция убывает при х∈(-∞; -0,3).
3) Промежутки знакопостоянства функции:
у > 0 (график выше оси Ох) при х∈(-∞4 -1,7)∪(1; +∞);
у < 0 (график ниже оси Ох) при х∈(-1,7; 1).
В решении.
Объяснение:
Построй график функции у=3х²+2х-5.
График - парабола со смещённым центром, ветви направлены вверх, придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 16 3 -4 -5 0 11 28
По графику найдите:
1)область значений функции;
Область значений функции - это проекция графика на ось Оу, ограниченная ординатой вершины параболы, обозначается Е(у). Ордината вершины = -5,3.
Е(у) = у∈(-5,3; +∞).
2) промежутки монотонности функции.
Функция возрастает при х∈(-0,3; + ∞);
Функция убывает при х∈(-∞; -0,3).
3) Промежутки знакопостоянства функции:
у > 0 (график выше оси Ох) при х∈(-∞4 -1,7)∪(1; +∞);
у < 0 (график ниже оси Ох) при х∈(-1,7; 1).