По кругу стоят 30 чисел (не обязательно целых), сумма которых явл. натуральным числом. известно, что сумма любых шести подряд идущих чисел больше 32, а сумма любых пяти подряд идущих меньше 27. чему равна сумма всех чисел?
Пусть S- сумма всех чисел , если эти числа разбить на 6 групп , в каждой из которых 5 идущих подряд чисел , то сумма чисел в каждой группе меньше 27 , а сумма всех чисел меньше чем 27 · 6 = 162 ⇒ S < 162 , если разбить эти числа на 5 групп , в каждой из которых по 6 идущих подряд чисел , то сумма чисел в каждой группе будет больше 32 , а сумма всех чисел больше чем 32·5 = 160 ⇒ S > 160 ⇒
162 > S > 160 , но между числами 160 и 162 есть только одно натуральное число - 161 ⇒ S = 161
Пусть S- сумма всех чисел , если эти числа разбить на 6 групп , в каждой из которых 5 идущих подряд чисел , то сумма чисел в каждой группе меньше 27 , а сумма всех чисел меньше чем 27 · 6 = 162 ⇒ S < 162 , если разбить эти числа на 5 групп , в каждой из которых по 6 идущих подряд чисел , то сумма чисел в каждой группе будет больше 32 , а сумма всех чисел больше чем 32·5 = 160 ⇒ S > 160 ⇒
162 > S > 160 , но между числами 160 и 162 есть только одно натуральное число - 161 ⇒ S = 161