По какому принципу делать такие ? |x|=-x ( x / |x| ) < = 1

alenamorozova4 alenamorozova4    1   07.07.2019 17:40    0

Ответы
sergejkochetko sergejkochetko  30.07.2020 21:54
|x|=-x
пусть х>0 значит правая часть уравнения точно отрицательная (-х<0), а с лева модуль, который всегда неорицательный, значит при х>0 нет решений

пусть x≤0, значит справа число неотрицательное (-x≥0)
слева при раскрытии модуля меняем знак, значит исх уравнение
-x = -x  - тождество
значит уравнение верно при всех неположительных икс  (т.е. при х≤0)

( x / |x| ) <= 1
ОДЗ |x|≠0 ⇔ x≠0
здесь модуль положельное число,умножаем обе части на него (знак неравенствоа поэтому неменяем)

x≤|x|
пусть x≥0, ⇒ модуль можно просто опустить
x≤x верно при всех икс, т.е. на рассматриваемом промежутке x≥0
пусть х<0, при раскрытии модуля меняем знак
x≤-x
т.к. слева число отриц., а справа положительное, значит неравенство верно при всех х
ответ х∈(-∞,0)U(0,+∞)
ПОКАЗАТЬ ОТВЕТЫ