Периметр прямоугольника равен 20 см. найдите его стороны, если известно, что площадь прямоугольника равна 24 см^2

anyacotick anyacotick    1   31.07.2019 17:00    2

Ответы
berezniki14 berezniki14  07.09.2020 23:56
20/2 =10. Это сумма двух разных сторон прямоугольника. Теперь подбираем числа так, чтобы их произведение равнялось 24. И эти числа 6 и 4
ПОКАЗАТЬ ОТВЕТЫ
EpsilonDelta EpsilonDelta  07.09.2020 23:56
P(ABCD)=20(см);
S(ABCD)=24(см^2);
Пусть меньшая сторона - а, большая - b.
Имеем:
P(ABCD)=2a+2b;
S(ABCD)=a*b;
То есть
2a+2b=20
a*b=24.
Для удобства и понимания обозначим а - х, b - y.
Решаем полученную систему уравнений

{2x+2y=20, | : 2
x*y=24;
{х+у=10 (доделили на 2);
ху=24;
Из первого уравнения имеем: х+у=10 <=> у=10-х. Подставляем значение у во второе уравнение.
Получим:
х*у=24 <=> х*(10-х)=24 <=> 10х-х^2=24 <=> -х^2+10х-24=0 | * (-1) (домножили на -1) <=> х^2-10х+24=0; D=(-10)^2-4*24=100-96=4;
х1,2=10+-2/2;
х1=6
х2=4.
Отсюда: 1) х+у=10 <=> 6+у=10 <=> у=4;
2) х+у=10 <=> 4+у=10 <=> у=6.
Возвращаемся к сторонам: а=х=6; а=4;
b=6; b=4.
Итак у нас есть две стороны: 6 см. и 4 см. (либо большая 6, либо наоборот, неважно).
ответ: 6 и 4.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра