Пример. Докажите формулу a 3 + b 3 = ( a + b )( a 2 – ab + b 2 ).
Решение. Имеем ( a + b )( a 2 – ab + b 2 ) = a 3 – a 2 b + ab 2 + ba 2 – ab 2 – b 3. Приводя подобные слагаемые, мы видим, что ( a + b )( a 2 – ab + b 2 ) = a 3 + b 3, что и доказывает нужную формулу.
Пример. Упростите выражение (2 x 3 – 5 z )(2 x 3 + 5 z ).
Решение. Воспользуемся формулой разности квадратов, получим: (2 x 3 – 5 z )(2 x 3 + 5 z ) = (2 x3 ) 2 – (5 z ) 2 = 4 x 6 – 25 z 2.
Пример. Докажите формулу a 3 + b 3 = ( a + b )( a 2 – ab + b 2 ).
Решение. Имеем ( a + b )( a 2 – ab + b 2 ) = a 3 – a 2 b + ab 2 + ba 2 – ab 2 – b 3. Приводя подобные слагаемые, мы видим, что ( a + b )( a 2 – ab + b 2 ) = a 3 + b 3, что и доказывает нужную формулу.
Пример. Упростите выражение (2 x 3 – 5 z )(2 x 3 + 5 z ).
Решение. Воспользуемся формулой разности квадратов, получим: (2 x 3 – 5 z )(2 x 3 + 5 z ) = (2 x3 ) 2 – (5 z ) 2 = 4 x 6 – 25 z 2.
ответ. 4 x 6 – 25 z 2.