Объяснение:
1) Неравенства старайтесь привести к такому виду, чтобы справа был 0, а слева произведение скобок.
Дальше находите нули в каждой скобке отдельно и решаете по методу интервалов.
2) Для области определения (ОДЗ) есть несколько ограничений:
А) Знаменатель дроби не должен быть равен 0.
Б) Число под корнем чётной степени (квадратным, 4, 6 и т.д степени) должно быть >= 0.
Заметьте, что для корней нечётных степеней (кубического, 5, 7 и т.д) такого ограничения нет.
В) Основание логарифма должно быть > 0 и не равно 1.
Число под логарифмом должно быть > 0.
Г) Число под тангенсом не должно быть равно Π/2 + Πk, где k - целое.
Число под котангенсом не должно быть равно Πk, где k - целое.
Вот и всё.
Составляете соответствующие неравенства и решаете их.
После того, как нашли область определения, не забудьте вернуться к решению самого уравнения!
Объяснение:
1) Неравенства старайтесь привести к такому виду, чтобы справа был 0, а слева произведение скобок.
Дальше находите нули в каждой скобке отдельно и решаете по методу интервалов.
2) Для области определения (ОДЗ) есть несколько ограничений:
А) Знаменатель дроби не должен быть равен 0.
Б) Число под корнем чётной степени (квадратным, 4, 6 и т.д степени) должно быть >= 0.
Заметьте, что для корней нечётных степеней (кубического, 5, 7 и т.д) такого ограничения нет.
В) Основание логарифма должно быть > 0 и не равно 1.
Число под логарифмом должно быть > 0.
Г) Число под тангенсом не должно быть равно Π/2 + Πk, где k - целое.
Число под котангенсом не должно быть равно Πk, где k - целое.
Вот и всё.
Составляете соответствующие неравенства и решаете их.
После того, как нашли область определения, не забудьте вернуться к решению самого уравнения!